EVOLUTION OF PARTICLE MORPHOLOGY OF PUMICE SUBJECTED TO TORSIONAL SHEAR

<u>Hiroyuki Hashimoto¹, Masahide Otsubo², Reiko Kuwano³ (Mail: hsmt@iis.u-tokyo.ac.jp)</u>

¹The University of Tokyo, Department of Civil Engineering, ²Port and Airport Research Institute, Geotechnical Engineering Department, ³The University of Tokyo, Institute of Industrial Science

Background

Characteristic of pumice soils :

- Existence of <u>intra-particle voids</u>
- High crushability and contractancy

- In normal sand, it has been investigated that particle morphology changes significantly subjected to particle breakage
 But it has not investigated in pumice soils

Research Objective:

Evaluation of particle morphology (shape and intra-particle voids) using 3D images of pumice particles subjected to consolidation and shear

Material & Test Procedure

Material: Artificial Pumice soil

- Mixture of non-plastic silt (DL clay), cement and water
- High reproducibility
- Porous & Crushable
- High void ratio (e = 2.28 at Dr = 70%)

Torsional shear test

- 1. Specimen preparation & saturation
- 2. Isotropic Consolidation (20→500kPa)
- 3. Drained torsional shear $\begin{pmatrix} under constant p' \\ until shear strain \gamma = 15 or 30\% \end{pmatrix}$
- 4. Sieving -> X-ray CT analysis

Results of Torsional Shear

- Shear stress gradually increased, and strain softening was not observed.
- Significant contractancy and particle breakage was observed.

X-ray CT Analysis

Image acquisition

Image processing

X-ray raw images

(from various angles)

Sieved & oven-dried pumice particles before/after tests

14.8 1.18-2.00 Resolution of 3D images

particle size

(mm)

0.106-0.25

0.25-0.425

0.425-0.85

0.85-1.18

Binarization, Filling Intra-particle pores, and Segmentation

Reconstruction

Evolution of void ratios

Definition of Intra-particle void ratio

Intra-particle void ratio vs. Particle size

Variation of Void ratios during tests

- Particle size (Equivalent diameter) (mm)
- Smaller particles showed lower *e*_{intra} values.
- No significant differences were observed before and after the test when comparing particles of the same size.

- Decrease of $\overline{e_{intra}}$ was larger than that of e_{inter}
- Filling of inter-particle voids by particle fragments generated by particle breakage was the major factor in the contractancy of the pumice soil.

Evolution of Particle Morphology

Evolution of Particle Crushing Strength

Pumice particles after shear showed higher crushing strength.

Conclusion

Evaluation of particle morphology (shape and intra-particle void ratio) of pumice particles subjected to torsional shear using X-ray CT images

- Significant contractancy and particle breakage was observed in drained torsional shear tests.
- Smaller particles showed lower e_{intra} values, but no significant differences were observed before and after the test when comparing particles of the same size.
- Decrease of e_{intra} was much larger than that of e_{inter}
- The pumice particles had transformed into more compact shape and showed higher crushing strength.

Future Plan: Study with natural pumice soils